Introduction to the Structural Eurocodes

Dr Andrew Bond
Geocentrix Ltd
www.geocentrix.co.uk/attic

Outline of lecture

- ✓ Part 1
 - ✓ What are the Structural Eurocodes?
 - ✓ Basis of design
 - Verification of safety
- ◆ Part 2
 - ◆ Geotechnical design
 - ◆ Comparison with traditional methods
 - Conclusions

Geotechnical design

Introduction to the Structural Eurocodes

Geotechnical Design Report

- ◆ The assumptions, data, calculations and results of the verification of safety and serviceability shall be recorded in a Geotechnical Design Report
- The Report shall include a plan of supervision and monitoring, as appropriate
- ◆ An extract of the Report containing the supervision, monitoring and maintenance requirements ... shall be provided to the owner/client

Sheet no of "New start housing development Made by: Date Structure Reference: Checked by: Strip foundations Approved by: Section through structure showing actions: Ground Investigation report (give ref. date) Bloggs Investigations Ltd report ABC/123 dated 21 Feb 95 Interpretation: Codes and standards used (level of acceptable Eurocode 7 Local building reas Assumed stratigraphy used in design with properties: Topsoil and very weathered glacial till up to 1m thick, overlying firm to stiff glacial till (c., 60 kPa on pocket penetrometer). Description of site surroundings: Formerly agricultural land. Gently sloping (4°) Calculations (or index to calculations) Information to be verified during construction. Notes on maintenance and monitoring. Characteristic load 60 kN/m. Local experience plus Local Concrete cast on un-softened alacial till Building Regulations (ref. with c., 60 kPa (pocket penetrometer) indicates working bearing pressure of 100 kPa acceptable. Therefore adopt footings 0.6 m wide, minimum depth 0.5 m (Building Regs) but depth varies to reach c., 60 kPa - test on

- Description of the ground conditions
- Description of the proposed construction, including actions
- Design values of soil and rock properties, including justification, as appropriate
- Statements of the level of acceptable risks
- Geotechnical design calculations and drawings

Verification of limit states STR/GEO

◆ (P) To ensure stability and adequate strength in the structure and in the ground, one of three Design Approaches shall be used for the STR and GEO ultimate limit states...

Design Approaches

- Design approach 1
 - Original method from ENV 1997-1
 - ◆ Load and material factor approach using two separate combinations of partial factors
- Design approach 2
 - ◆ Load and resistance factor approach
- Design approach 3
 - Load and material factor approach

- Partial factors for STR and GEO limit states:
 - ◆ Combination 1: A1+M1+R1
 - $\gamma \ge 1.0$ on actions
 - ◆ Combination 2: A2+M2+R1
 - $\gamma \ge 1.0$ on ground properties
- But for piles and anchorages...
 - ◆ Combination 1: A1+M1+R1
 - $\gamma \ge 1.0$ on actions
 - ◆ Combination 2: A2+(M1 or M2)+R2
 - $\gamma \ge 1.0$ on resistances

Partial factors on actions (γ_F) and action effects (γ_E)

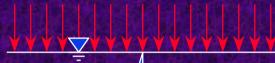
Action		Symbol	EQU	STR/GEO	
				A1	A2
Permanent	Unfavourable	γ _G	1.1	1.35	1.0
	Favourable		0.9	1.0	1.0
Variable	Unfavourable	γο	1.5	1.5	1.3
	Favourable		0	0	0

Set A1 partial factors

Actions: $F_d = \gamma_F F_k$

Material properties:

$$X_d = X_k / 1.0$$


Partial material factors (γ_M)

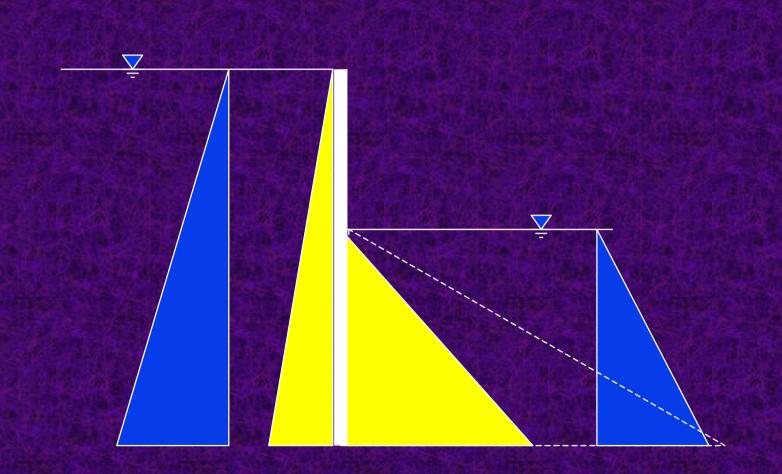
Ground property	Symbol	EQU	STR/GEO	
			M1	M2
Shearing resistance	γ_{Φ}	1.25	1.0	1.25
Effective cohesion	γ _c ,	1.25	1.0	1.25
Undrained strength	Ycu	1.4	1.0	1.4
Unconfined strength	$\gamma_{ m qu}$	1.4	1.0	1.4
Unit weight	γσ	1.0	1.0	1.0

EN 1997-1 (Draft G, Feb 2001 + UK modification) A.1.2 & A.2.2

Set M2 partial factors

Material properties:

$$X_d = X_k / \gamma_M$$


Design Approach 2

- Partial factors for STR and GEO limit states:
 - ◆ Combination 1: A1+M1+R3
 - $\gamma \ge 1.0$ on action effects and resistances
- But for slopes and overall stability...
 - ◆ Combination 1: A2+M2+R1 (same as DA1)
 - $\gamma \ge 1.0$ on actions and ground properties
 - ◆ Combination 2: (A1 or A2)+M2+R1
 - $\gamma \ge 1.0$ on ground properties

Partial resistance factors - retaining structures

Resistance	Symbol	STR/GEO		
		R1	R2	R3
Bearing capacity	$\gamma_{ m Rv}$	1.0	1.0	1.4
Sliding resistance	$\gamma_{ m Rh}$	1.0	1.0	1.1
Earth resistance	$\gamma_{ m Re}$	1.0	1.0	1.4

Set R3 partial factors

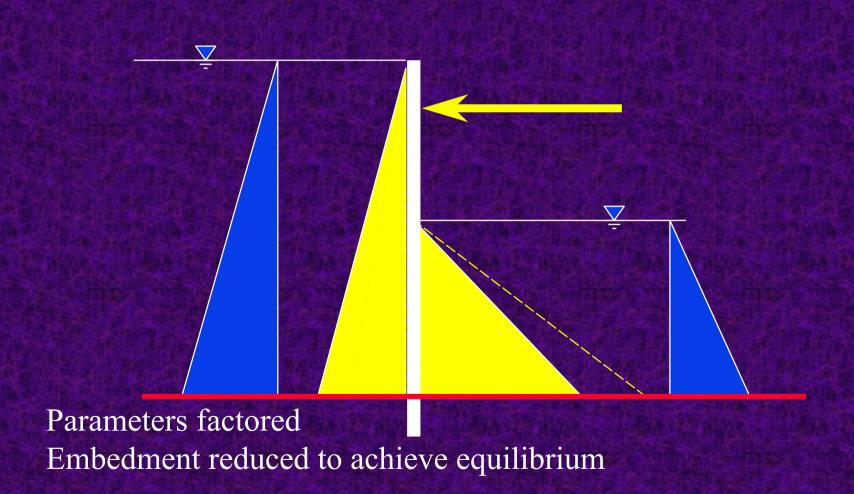
Partial resistance factors - piled foundations (bored piles)

Resistance	Symbol	STR/GEO		
		R1	R2	R3
Base	$\gamma_{ m b}$	1.25	1.6	1.1
Shaft (compression)	$\gamma_{ m s}$	1.0	1.3	1.1
Total/combined (compression)	$\gamma_{ m t}$	1.15	1.5	1.1
Shaft (tension)	$\gamma_{\mathrm{s,t}}$	1.25	1.6	1.15

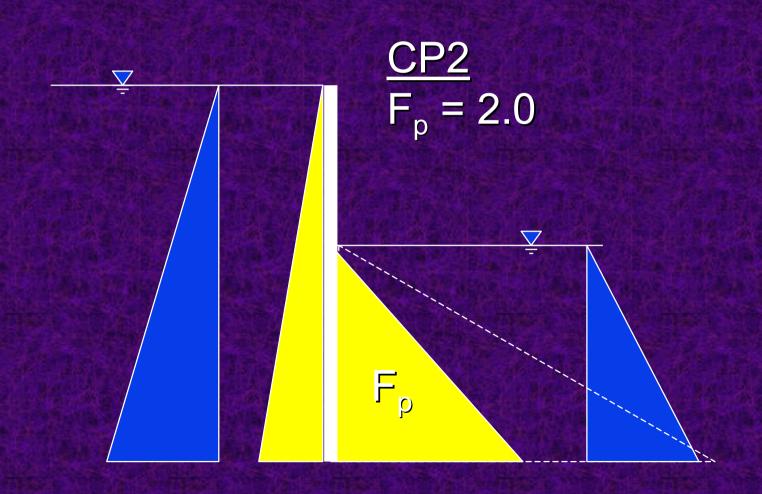
Partial resistance factors - piled foundations (driven piles)

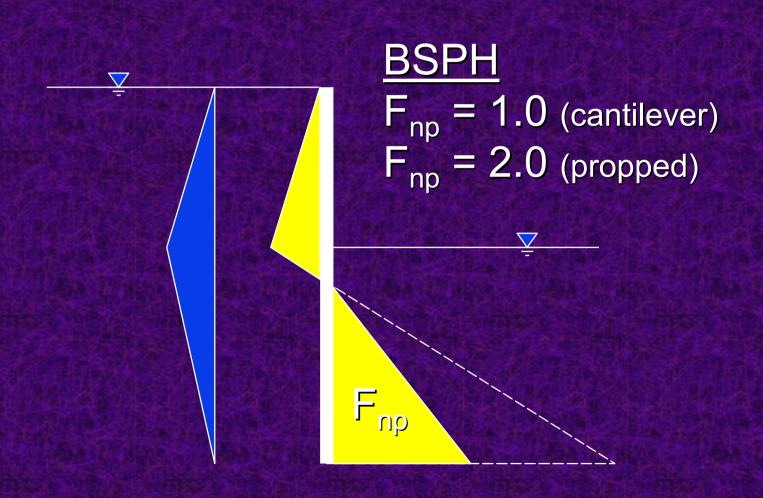
Resistance	Symbol	STR/GEO		
		R1	R2	R3
Base	$\gamma_{ m b}$	1.0	1.3	1.1
Shaft (compression)	$\gamma_{ m s}$	1.0	1.3	1.1
Total/combined (compression)	$\gamma_{ m t}$	1.0	1.3	1.1
Shaft (tension)	$\gamma_{\mathrm{s,t}}$	1.25	1.6	1.15

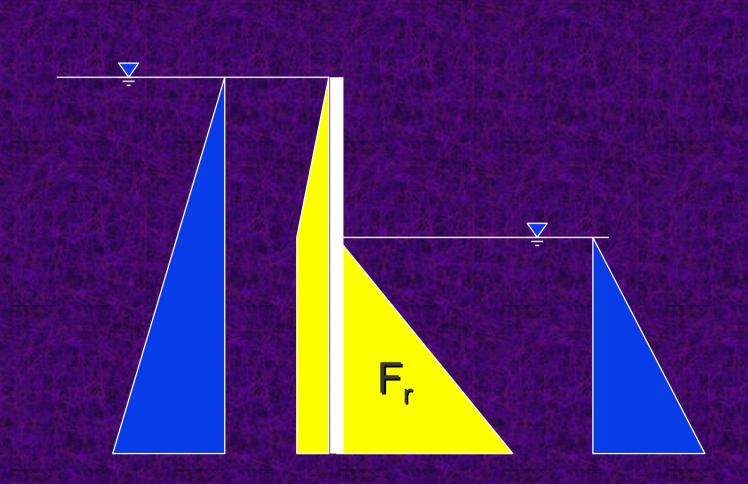
Design Approach 3

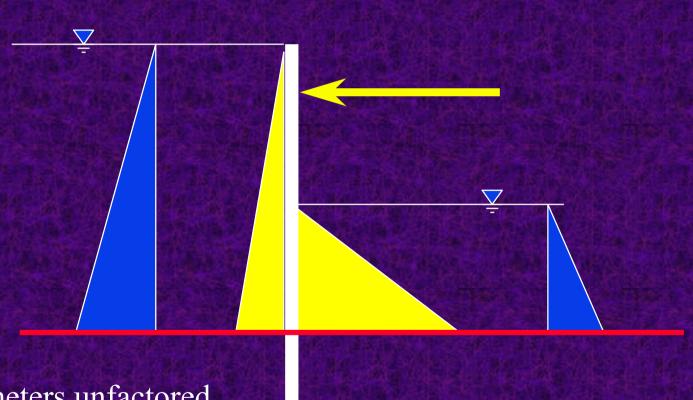

- Partial factors for STR and GEO limit states:
 - ◆ Combination 1: (A1 or A2)+M2+R1
 - $\gamma \ge 1.0$ on structural actions only (A1)
 - $\gamma \ge 1.0$ on ground properties

Comparison with traditional methods


Introduction to the Structural Eurocodes

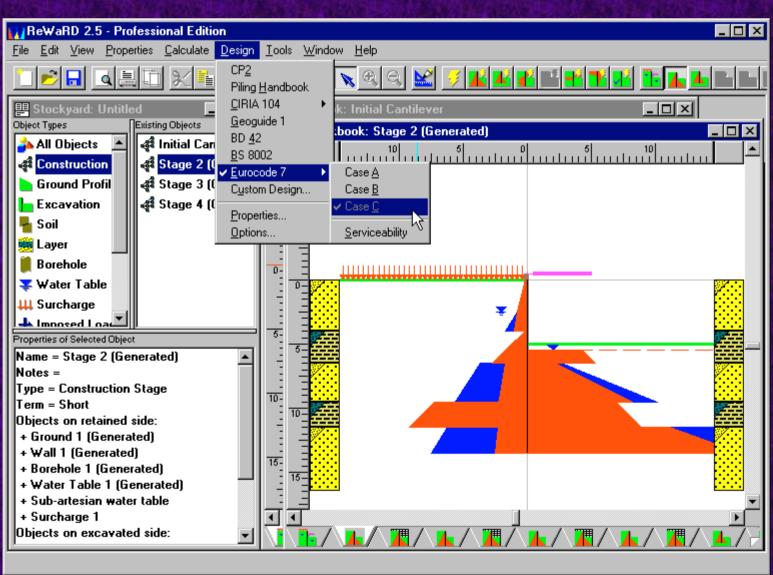

Calculation of structural forces: limit state codes


Traditional gross pressure method

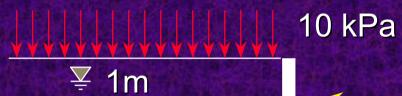

Traditional nett pressure method

Revised (Burland-Potts) method

Calculation of structural forces: CIRIA 104


Parameters unfactored
Embedment reduced to achieve equilibrium
Calculated moment multiplied by 1.4-1.6 (typically 1.5)

Partial material factors from various codes


Code			tan o	C'	C _u
EN1997 ENV1997 BS 8002 Geoguide 1 CIRIA 104	Set M2 Case C Mod. Con. Worst Cred.	Temporary Permanent Temporary	1.25 1.25 1.2 1.2 1.2 1.5 1.0	1.25 1.6 1.2 1.2 1.2 1.5 1.0	1.4 1.5 2.0 1.5 *
		Permanent	1.2	1.2	*

^{*}Not applicable

Dedicated software makes this easy

Example C3 from CIRIA 104

Clay

 γ = 20 kN/m³ ϕ = 25 deg c' = 5 kPa

Results of parametric study: Example C3

Design standard		Embedment (m)	Bending (kNm/m)	Shear (kN/m)	
CP2	F_p	19.8	823	285	
BSPH	F _{np}	14.6	727	263	
CIRIA 104	F	16.5	695*	253*	
CIRIA 104	Fs	17.8	695*	253*	
Geoguide 1		14.9	839	269	
BS 8002		16.2	1116	312	
Eurocode 7	Α	(15.2)	(934)	(281)	
	В	(13.8)	(921)	(294)	
	C	16.9	1276	352	

Results compared to CIRIA 104

- ◆ Embedment
 - ◆ BSPH & Geoguide 1 = 15% lower
- Bending moments/shear forces
 - ◆ CP2 & Geoguide 1 = 20% higher
 - ◆ BS 8002 = 60% higher
 - ◆ Eurocode 7 = 80% higher

Conclusions

Introduction to the Structural Eurocodes

Pros and cons of Eurocode 7

Cons

- Code is unnecessarily complicated in places
- Unhappy compromise between countries
- New terminology is difficult for some to learn
- Appears to abandon traditional methods
- Proposed safety system has not been tested!

Pros

- Logical framework for the design of geotechnical structures
- Prospect of a universal design approach based on sound engineering principles

Introduction to the Structural Eurocodes

Dr Andrew Bond Geocentrix Ltd www.geocentrix.co.uk

